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Abstract

Benchmark solutions to time-dependent radiative transfer problems involving non-equilibrium coupling
to the material temperature field are crucial for validating time-dependent radiation transport codes.
Previous efforts on generating analytical solutions to non-equilibrium radiative transfer problems were all
restricted to the one-group grey model. In this paper, a non-grey model, namely the picket-fence model, is
considered for a two temperature non-equilibrium radiative transfer problem in an infinite medium. The
analytical solutions, as functions of space and time, are constructed in the form of infinite integrals for both
the diffusion description and transport description. These expressions are evaluated numerically and the
benchmark results are generated. The asymptotic solutions for large and small times are also derived in terms
of elementary functions and are compared with the exact results. Comparisons are given between the
transport and diffusion solutions and between the grey and non-grey solutions. ( 1999 Elsevier Science Ltd.
All rights reserved.

1. Introduction

Time-dependent radiative transfer problems with the radiation and material energy fields in
non-equilibrium are generally very complex and have to be solved numerically. Many computer
codes for these types of problems, employing different numerical algorithms and techniques, exist
in the engineering and scientific community. In order to verify the numerical procedures used in
codes and assess the accuracies of codes, it is often desirable to have analytical benchmarks for
some reference problems, to which numerical solutions (code results) can be compared. In the
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context used here, an analytical benchmark means a closed-form representation to a radiative
transfer problem for which an accurate numerical evaluation can be performed.

Some analytical benchmarks for time-dependent and non-equilibrium radiative transfer prob-
lems exist in the literature. Particularly, the non-equilibrium Marshak wave problem [1], where an
initially cold, semi-infinite, purely absorbing, and homogeneous medium is irradiated isotropically
at the free surface, has received considerable attention. The full Marshak wave problem is
non-linear and is, therefore, mathematically intractable. But with several simplifying assumptions
on material properties [2], it has been linearized and thus analyzed. Specifically, this problem has
been considered in the diffusion and low-order spherical harmonic (P

1
and P

2
) approximations,

and the analytic solutions were obtained for the radiation density and material temperature at the
free surface and for the spatially integrated radiation and material energy contents as functions of
time [2, 3], as well as for the full radiation and material temperature fields in the interior of the
medium as functions of space and time [2, 4]. In the transport description, Ganapol and Pomran-
ing [5] solved the problem using a multiple-collision approach and gave the transport solutions for
the radiation density and material temperature at the free surface and for the radiation and
material energy contents. No transport solution for the distribution of radiation and material
temperature in the medium was given in that paper [5]. Later in an unpublished report, Ganapol [6]
closed the gap and derived the transport solution in the interior of medium. However, only figures
showing space-time solutions were presented and no tabulated numerical results were available for
the interior of medium. In order to generate a detailed numerical benchmark for full space-time
transport solution in the interior of medium and also partially due to their unfamiliarity with the
multiple collision approach, Su and Olson [7] considered a different and mathematically simpler
non-equilibrium radiative transfer problem than the foregoing Marshak wave problem. For this new
problem the full solutions, as functions of space and time, were constructed easily for radiation and
material energy fields in a straightforward way and detailed numerical results were given.

All the above analytical benchmarks were generated for the one-group grey model. That is, there
is no frequency dependence in the problems. However, in reality some of the material properties,
such as the opacity, varies by orders of magnitude over the frequency structure and the frequency
variable is almost universally treated by the multigroup method. Obviously, there is a need to have
non-grey benchmarks to test codes in more detail. In this paper, we reconsider the same problem
considered earlier in Ref. [7] by using a non-grey model, namely the picket-fence model. In this
model, the frequency variable is divided into two (or more) groups. So, this work is an extension of
Ref. [7] to include the frequency variable. In the next section, we describe the problem and the
picket-fence model for completeness. The general solutions, asymptotic solutions and numerical
results to the problem are given in Section 3 for the diffusion description and in Section 4 for the
transport description, respectively. In Section 5, comparisons between the diffusion and transport
solutions and between the two-group picket-fence model and the one-group grey model are
presented. Some concluding remarks are given in the last section.

2. The problem and the picket-fence model

We consider a basic non-equilibrium radiative transfer problem, which corresponds to an
initially cold, homogeneous, infinite, and purely absorbing medium with an internal isotropic
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radiation source. Hydrodynamic motion and heat conduction are assumed unimportant and thus
neglected. For a general temperature dependence of the material properties, the equations describ-
ing this problem are non-linear and thus analytically intractable. As shown previously [2—7], these
equations become linear in the radiation intensity and the fourth power of the material temper-
ature if the opacity (absorption cross section) is taken as independent of temperature, and the
material specific heat is assumed proportional to the cube of the material temperature. It should be
pointed out that the sole purpose of these assumptions on material properties is to relax the
physical content of the problem such that a detailed analytic solution can be obtained and thus
provide a useful test problem for radiative transfer codes, since those codes are meant to handle an
arbitrary temperature dependence of the material properties. With these assumptions, the coupled
radiation transport and material balance equations in one dimensional plane geometry for this
problem, including the frequency variable, are given by

1
c

LI
Lt

#k
LI
Lz

"i (B!I)#
S
4n

, (1)

a
4

L¹4

Lt
"2n P

1

~1

dk P
=

0

dl i (I!B) . (2)

Here, z and t are the spatial and temporal coordinates; k is the cosine of the photon direction
measured with respect to the z axis; l is the frequency variable; I(z, l, k, t) is the radiative intensity;
¹(z, t) is the material temperature; B[l, ¹(z, t)] is the Planck function; S(z, l, t) is the interior
radiation source; i(l) is the opacity of material and could be a strong function of l; a is the
proportionality constant for the cube temperature dependence of the specific heat; and c is the
speed of light. The boundary and initial conditions on Eqs. (1) and (2) are

lim
z?$=

I(z, l, k, t)"I(z, l, k, 0)"¹(z, 0)"0. (3)

We take the opacity i(l) to be given by the two-value (or more general n-value) picket-fence
model, which is defined as follows. Consider a small frequency interval *l at some frequency l. This
interval is small enough (essentially differential in size) so that the Planck function B(l,¹) and the
external source S(z, l, t) can be assumed not to vary over *l. At any frequency within *l, the
opacity assumes one of the two values, which we denote by i

n
, n"1, 2. We let p

n
be the fraction of

the interval *l for which the opacity is i
n
, and assume that the p

n
are independent of l. That is, the

p
n

are independent of where *l is placed on the spectrum 04l(R. Certainly, we have
p
1
#p

2
"1 and we define an averaged opacity iN as

iN "p
1
i
1
#p

2
i
2
, (4)

which defines a natural length scale for the problem.
We next let l

n
denote all values of l on the interval 04l(R for which i(l)"i

n
. If we

integrate Eq. (1) over l
n
, define

I
n
(z, k, t)"Plndl I(z, l, k, t), (5)
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and use

P
=

0

dl B(l, ¹)"
ac¹4

4n
, (6)

P
=

0

dl S(z, l, t)"S
0
(z, t), (7)

then Eqs. (1) and (2) become
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The parameter a in the above equations is the radiation constant. As in the previous work [2—7],
we rewrite Eqs. (8) and (9) in the form of dimensionless variables given by

e
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where x,iN z, w
n
,i

n
/iN , e,4a/a, q,eciN t, u

n
(x, k, q),2nI

n
(z, k, t)/(ac¹4

0
), »(x, q),[¹(z, t)/¹

0
]4,

and Q(x, q),S
0
(z, t)/(aciN ¹4

0
), with ¹

0
being a reference temperature. In these new variables, x and

q are the scaled spatial and temporal variables, and u
n
, », and Q are the dimensionless radiation

intensity, material energy density, and radiation source, respectively. The material properties are
now represented by w

n
, with p

1
w
1
#p

2
w

2
"1, and e.

The boundary and initial conditions for Eqs. (10) and (11) are,

lim
x?$=

u
n
(x, k, q)"u

n
(x, k, 0)"»(x, 0)"0 . (12)

These conditions imply that the material is initially cold and suffers no irradiation before the
interior source Q(x, q) is turned on at q"0. We specify Q to be a unit radiation source which is
constant in time but only exists in a finite period of time (04q4q

0
) and is uniformly distributed in

a finite space (!x
0
4x4x

0
), i.e.

Q(x, q)"Q
1
(x)Q

2
(q) (13)

with

Q
1
(x)"

1
2x

0

[h(x#x
0
)!h(x!x

0
)] , (14)

Q
2
(q)"h(q)!h(q!q

0
) . (15)
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The h in Eqs. (14) and (15) is the Heaviside (unit step) function. The mathematical objective for
Eqs. (10)—(15) is to derive the analytic expressions for u

n
and » so that very accurate numerical

results can be generated.

3. Solutions to the diffusion description

Diffusion theory is still used in radiative transfer calculations, because it can yield approximate
solutions very quickly. In this section, we generate the benchmark results for diffusion theory. The
diffusion description for the problem we just discussed is given by

e
Lº

n
Lq

!

1
3w

n

L2º
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(p

n
»!º

n
)#p
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lim
x?B=

º
n
(x, q)"º

n
(x, 0)"»(x, 0)"0, (18)

where º
n

is the scalar radiation energy density defined by

º
n
(x, q)"P

1

~1

dk u
n
(x, k, q). (19)

3.1. The general solutions

To solve Eqs. (16)—(18), we apply the Fourier transform with respect to the spatial variable x and
apply the Laplace transform with respect to the temporal variable q. That is, we introduce the
double transforms according to

fM (k, s)"P
=

0

dq e~sqP
=

~=

dx e~*kx f (x, q). (20)

After the transformations, Eqs. (16) and (17) become coupled linear algebraic equations for ºM
n
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»M . Solving these algebraic equations, we have
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, (22)

where

QM (k, s)"QM
1
(k)QM

2
(s) (23)
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with
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The solutions º
n
(x, q) and »(x, q) follow from the double inversions of Eqs. (21) and (22). To

proceed, we rewrite the denominator of Eqs. (21) and (22) as

e2s3#b
2
s2#b

1
s#b

0
"e2(s#s

1
)(s#s

2
)(s#s

3
) . (29)

The s
j
( j"1!3), which all turn out to be real, are found by the Cardano’s formula [8] and given

by

s
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b
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The g given by Eq. (36) is positive for all k.
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With the s
j
known, we rearrange ºM

n
and »M , denoted here by ¼M in general, as

¼M (k, s)"QM
1
(k)QM
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(s)

3
+
j/1

A
j
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s#s
j
(k)

. (37)

The coefficients A
j
(k) are given by

A
j
(k)"

N(!s
j
)

D@(!s
j
)
, (38)

where N represents the numerator and D@ represents the first derivative, with respect to s, of the
denominator of ºM

n
or »M . The Laplace inversion of Eq. (37) can be done analytically and yields

¼M (k, q)"QM
1
(k)

3
+
j/1

A
j

s
j

(e~sjq*!e~sjq) , (39)

where

q*"max[0, (q!q
0
)]. (40)

However, the Fourier inversion of Eq. (39) has to be performed numerically due to the complex
dependence of A

j
and s

j
on k. Using the inversion formula and the fact that all s

j
and A

j
are

symmetric in k, we finally have
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0

dk cos(kx)QM
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3
+
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A
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s
j

(e~sjq*!e~sjq) , (41)

which is the general solution representation for º
1
(x, q), º

2
(x, q), and »(x, q), with A

j
determined

individually for each quantity.

3.2. The asymptotic solutions

The exact solutions for º
n
and » come from the inverse transformations of Eqs. (21) and (22). As

just shown, the complete inversion cannot be performed analytically and some numerical work is
required in this process. However, the asymptotic solutions at large times and small times are
available in elementary functions. The details of these asymptotic analyses is analogous to that
given in Ref. [7]. Here we only outline the main steps and give the results without too much
algebraic detail.

It is easy to verify that the roots s
j

monotonically increase with k, with s
3
's

2
's

1
'0.

According to Eq. (41), the main contribution to the solutions, at large times (q<q
0
), comes from

small k and s
1
. To obtain simple asymptotic solutions at large times, we neglect the contributions

from s
2
and s

3
. Since at large times the main contribution to the Laplace inversion is due to small s,

we assume

e2s3;b
2
s2@b

1
s@b

0
, (42)
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neglect the quadratic and cubic terms of s correspondingly in Eq. (29), and approximate s
1

by b
0
/b

1
for small s. Expanding s

1
, QM

1
, and QM

2
at small k and small s as
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2
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0
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finding A
1

and expanding it at k"0 up to the quadratic term in k, we obtain an approximation to
Eq. (37) at small s and small k. Converting these simplified ºM

n
and »M back to the x!q domain

analytically yields the following asymptotic solutions at large times given by
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in these equations are defined by
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Small q solutions are dominated by large values of s. Therefore, to obtain small q asymptotic
solutions, we assume

b
0
;b

1
s;b

2
s2;e2s3 , (52)

keep QM untouched, and expand the other parts of ºM
n

and »M into polynomials in terms of 1/s.
Keeping the terms up to 1/s3 and converting the resulting large s approximations for Eqs. (21) and
(22) back to the x!q domain, we obtain the asymptotic solutions for small times given by
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Table 1
Specification for the three cases

Case x
0

q
0

e p
1

p
2

w
1

w
2

w
2
/w

1

A 0.50 10.0 1.0 0.50 0.50 1 1 1
B 0.50 10.0 1.0 0.50 0.50 2/11 20/11 10
C 0.50 10.0 1.0 0.50 0.50 2/101 200/101 100

As pointed out earlier [7], these small q asymptotic solutions indicate that at very small times, the
radiation and material energy densities only depend upon the local source. The effect of streaming
(propagation of radiation) is totally neglected. This is justifiable for spatial positions well within the
source region, where the spatial gradients of densities are very small. However, this is not the case
near the edges of the source region (note that the source is uniformly distributed in !x

0
4x4x

0
),

where the spatial gradients of densities are huge and thus the effect of streaming is important.
Therefore, Eqs. (53) and (54) are not valid near $x

0
.

3.3. The numerical results

The benchmark results of º
n
(x, q) and »(x, q) for the diffusion description are computed

according to Eq. (41), with the integral being evaluated numerically. The whole integration range
(04k4R) is divided into subranges, i.e. we rewrite Eq. (41) as

¼(x, q)"
1
n

=
+
l/0
P

kl`1

kl

dk cos(kx)QM
1
(k)

3
+
j/1

A
j

s
j

(e~sjq*!e~sjq), (55)

where k
l
is defined as l22n/(x#x

0
). For each subrange, k

l
4k4k

l`1
, the integral is evaluated by

the Simpson’s rule, i.e. each integration subrange is divided into 2N equal intervals and N is
successively increased from N"1, 2, 3, 2 , until a desired accuracy is achieved. We require the
numerical results of º

n
(x,q) and »(x,q) to have five digits after the decimal point; therefore, the

convergence criteria is set to be 0.0001%. Specifically, the integral for each subrange is thought to
be converged when a relative error of 0.0001% is achieved between two successive numerical
evaluations (with halved intervals). The computation continues subrange by subrange until
a subrange in which the absolute value of the integral is less than 1]10~7 is reached. This value
(1]10~7) is selected so that the neglected subranges contribute nothing to the total integration
within the accuracy requirement (1]10~5). As we have mentioned, the roots s

j
increase monotoni-

cally with k. Thus, large k contribute little or nothing to the integral, especially at large times.
Computations show that for most of (x, q) points, the integral converges within first few subranges.

Three cases are chosen to be calculated. The parameters specifying the medium and the source
are given in Table 1 for the three cases. Except for the group opacities w

1
and w

2
, all the other

parameters are the same for all the cases. For Case A, we set w
1
"w

2
"1 so that the two-group

picket-fence model we are considering in this work is equivalent to the grey model we considered
earlier [7]. We use this case as a test to check the algebraic manipulations and numerical methods
involved in this work, since the grey solution [7] and the picket-fence model solution are
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Fig. 1. Comparison between the numerical and asymptotic diffusion solutions.

constructed differently. Calculations show that we do reproduce the grey model results by Eq. (55)
for this case, as it should. This agreement gives us confidence on both of the treatments given here
and in Ref. [7]. For Case B, the ratio of the two opacities, w

2
/w

1
, is set to be 10; and for Case C that

ratio is 100. These two non-grey cases are what we really are interested in.
To further test the numerical scheme, we compare the numerical results with the large q and

small q asymptotic solutions for the three cases at x"0.1. The results are given in Fig. 1. The
quantity shown in the figure, D, is the relative error between asymptotic and numerical solutions
and is defined as

D"K
º

/6.%3*#!-
!º

!4:.1505*#
º

/6.%3*#!-
K , (56)

where º(x, q)"º
1
(x, q)#º

2
(x, q) is the total radiation energy density. We see that the agreement

between the numerical solutions and the both asymptotic solutions is very good for Case A. Even
at moderate small and moderate large q, the relative errors are below 1%. However, for the same
q the agreement deteriorates for Case B and Case C, where the ratio of w

2
/w

1
becomes larger and

larger. This phenomenon is not surprising. Because in our asymptotic analyses, we treated b
2
, b

1
,

and b
0

given by Eqs. (26)—(28) as finite. Thus, in large q (small s) analysis, we assumed and used
Eq. (42); and in small q (large s) analysis, we assumed and used Eq. (52). But, as w

2
/w

1
goes to

infinity (or equivalently as w
1

goes to zero due to the scaling of p
1
w
1
#p

2
w
2
"1), b

0
through b

2
go

to infinity too for non-zero k. As a result, the assumptions given by Eqs. (42) and (52) are
compromised for very large values of w

2
/w

1
and the asymptotic solutions obtained in Section 3.2

only work well at extremely small or extremely large q for such cases, as suggested in the figure.
Nevertheless, Fig. 1 clearly shows that the numerical results match the asymptotic solutions where
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they are appropriate and as q goes to infinitely small or infinitely large the two solutions converge.
Thus, the numerical scheme is validated at least to some extent.

The benchmark results for º
1
(x, q), º

2
(x, q), and »(x, q), computed from Eq. (55), are given at

selected x!q points in Tables 2 and 3 for the non-grey Case B and Case C, respectively. (The
benchmark results for the grey Case A was given in Ref. [7].) At each time, the results given in
the tables can construct reasonably smooth spatial profiles for radiation and material temperature
fields. The data given in the tables are accurate at least up to the fourth digit after the decimal point,
with the maximum absolute error of order of 10~5. All the data in the tables were generated on
a personal workstation and took only few minutes of computational time.

4. Solutions to the transport description

The solutions to the transport equations, given by Eqs. (10) and (11), are obtained by exactly
following the approach given earlier for the grey problem [7]. This section is purposely written
succinctly, and the reader is referred to Ref. [7] for algebraic details.

4.1. The general solutions

As for the diffusion description, we apply the double transformations, given by Eq. (20), to
Eqs. (10) and (11) and obtain

(w
n
#es#ikk) uN

n
(k, k, s)"1

2
p
n
w

n
»M (k, s)#1

2
p
n
QM (k, s), (57)

(1#s)»M (k, s)"w
1
ºM

1
(k, s)#w

2
ºM

2
(k, s) . (58)

In Eq. (58), we have used the relationship between º
n
and u

n
defined by Eq. (19). Dividing Eq. (57)

by (w
n
#es#ikk), integrating over k form !1 to 1, defining

r
n
(k, s)"

1
2 P

1

~1

dk
(w

n
#es#ikk)

, (59)

and using the analogous relationship between ºM
n

and uN
n

as Eq. (19), we have the coupled linear
algebraic equations for ºM

n
and »M . Solving the resultant equations yields

ºM
n
"p

n
r
n
QM C

1#s!w
m
(1!w

n
)r
m

1#s!(p
1
w2

1
r
1
#p

2
w2

2
r
2
)D , n, m"1, 2, mOn, (60)

»M "QM C
p
1
w

1
r
1
#p

2
w

2
r
2

1#s!(p
1
w2
1
r
1
#p

2
w2

2
r
2
)D . (61)

The transport solutions for º
n
(x, q) and »(x, q) follow from the double Laplace—Fourier inversions

of Eqs. (60) and (61). Unfortunately, none of the inversions can be done analytically. As discussed in
Ref. [7] for the grey case, all the singularities of ºM

n
and »M are in the left half space of s. Thus, the

integration contour of the Laplace inversion is taken as the imaginary axis of s. Setting s"ig and
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Table 2
The diffusion benchmarks of º

1
(x, q), º

2
(x, q), and »(x, q) for Case B

x q"0.1 q"0.3 q"1.0 q"3.0 x q"10.0 x q"30.0

0.03873! 0.08265 0.16857 0.30028 0.54038 0.18634
0.00 0.04578" 0.11394 0.23845 0.44678 0.00 0.91470 0.00 0.27740

0.00452# 0.03326 0.20363 0.66656 1.65679 0.55480

0.03649 0.07923 0.16426 0.29531 0.53144 0.18502
0.20 0.04501 0.10820 0.22479 0.42434 0.25 0.86466 0.50 0.27193

0.00447 0.03200 0.19265 0.63301 1.56620 0.54352

0.02951 0.06891 0.15134 0.28045 0.50483 0.18117
0.40 0.03684 0.08416 0.17908 0.35415 0.50 0.71131 1.00 0.25663

0.00380 0.02552 0.15342 0.52613 1.28823 0.51207

0.02402 0.06109 0.14164 0.26934 0.46974 0.17510
0.50 0.02293 0.05926 0.14007 0.29871 0.75 0.53047 1.50 0.23431

0.00229 0.01736 0.11740 0.43986 0.96146 0.46654

0.01840 0.05282 0.13115 0.25719 0.43543 0.16728
0.60 0.00902 0.03433 0.10051 0.24141 1.00 0.39561 2.00 0.20851

0.00077 0.00919 0.08102 0.35113 0.71995 0.41440

0.01027 0.03884 0.11187 0.23393 0.37106 0.14830
0.80 0.00084 0.00994 0.04988 0.15585 1.50 0.22432 3.00 0.15810

0.00011 0.00258 0.03862 0.22372 0.41695 0.31398

0.00535 0.02790 0.09478 0.21218 0.26397 0.10764
1.00 0.00004 0.00232 0.02364 0.09963 2.50 0.08847 5.00 0.08984

0.00003 0.00087 0.01903 0.14403 0.17808 0.17988

0.00214 0.01785 0.07633 0.18718 0.18465 0.06580
1.25 0.00000 0.00028 0.00882 0.05695 3.50 0.04739 7.50 0.04619

0.00001 0.00035 0.00882 0.08608 0.10114 0.09326

0.00075 0.01098 0.06081 0.16454 0.10537 0.03742
1.50 0.00000 0.00003 0.00323 0.03321 5.00 0.02290 10.0 0.02297

0.00000 0.00018 0.00489 0.05476 0.05035 0.04666

0.00023 0.00649 0.04793 0.14418 0.05834 0.02006
1.75 0.00000 0.00001 0.00125 0.02023 6.50 0.01118 12.5 0.01089

0.00000 0.00009 0.00314 0.03754 0.02498 0.02225

0.00368 0.03735 0.12593 0.03128 0.01021
2.00 0.00000 0.00057 0.01312 8.00 0.00529 15.0 0.00493

0.00005 0.00218 0.02760 0.01201 0.01014

0.00650 0.05219 0.01291 0.00496
3.50 0.00004 0.00264 10.0 0.00184 17.5 0.00214

0.00025 0.00778 0.00429 0.00443

0.00071 0.01901 0.00389 0.00230
5.00 0.00000 0.00070 12.5 0.00045 20.0 0.00089

0.00002 0.00228 0.00108 0.00186

0.00395 0.00105 0.00044
7.00 0.00010 15.0 0.00010 25.0 0.00014

0.00036 0.00025 0.00029

0.00062 0.00025 0.00018
9.00 0.00001 17.5 0.00002 27.5 0.00005

0.00004 0.00005 0.00011

!Result for º
1
(x, q). "Result for º

2
(x, q). #Result for »(x, q).
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Table 3
The diffusion benchmarks of º

1
(x, q), º

2
(x, q), and »(x, q) for Case C

x q"0.1 q"0.3 q"1.0 q"3.0 x q"10.0 x q"30.0

0.01828! 0.03404 0.06484 0.11433 0.20855 0.06128
0.00 0.04546" 0.11251 0.23441 0.44368 0.00 0.93964 0.00 0.35004

0.00451# 0.03340 0.20434 0.67399 1.74573 0.71204

0.01756 0.03323 0.06397 0.11343 0.20761 0.06123
0.25 0.04411 0.10355 0.21289 0.40645 0.25 0.88173 0.50 0.33536

0.00444 0.03142 0.18633 0.61576 1.63452 0.68082

0.01537 0.03079 0.06138 0.11073 0.20482 0.06108
0.50 0.02275 0.05809 0.13483 0.28679 0..50 0.70579 1.00 0.29535

0.00226 0.01699 0.11294 0.42201 1.29579 0.59613

0.01263 0.02765 0.05797 0.10717 0.20110 0.06083
0.75 0.00140 0.01247 0.05366 0.15591 0.75 0.49837 1.50 0.24013

0.00008 0.00254 0.03781 0.21349 0.89912 0.48038

0.01026 0.02475 0.05470 0.10367 0.19740 0.06013
1.00 0.00002 0.00185 0.01939 0.08076 1.00 0.34348 2.50 0.12910

0.00001 0.00032 0.01172 0.10346 0.60852 0.25242

0.00654 0.01959 0.04854 0.09692 0.18296 0.05785
1.50 0.00000 0.00002 0.00191 0.01931 2.00 0.06421 5.00 0.02108

0.00001 0.00005 0.00118 0.02258 0.10741 0.04111

0.00396 0.01526 0.04287 0.09047 0.16268 0.05684
2.00 0.00000 0.00000 0.00019 0.00442 3.50 0.00799 6.00 0.01550

0.00000 0.00004 0.00040 0.00566 0.01577 0.03091

0.00227 0.01169 0.03770 0.08433 0.14411 0.05529
2.50 0.00000 0.00000 0.00007 0.00137 5.00 0.00505 7.50 0.01319

0.00000 0.00003 0.00031 0.00256 0.01096 0.02663

0.00063 0.00652 0.02873 0.07295 0.11678 0.05257
3.50 0.00000 0.00000 0.00005 0.00064 7.50 0.00373 10.0 0.01141

0.00000 0.00001 0.00022 0.00170 0.00819 0.02309

0.00237 0.01842 0.05802 0.09361 0.04372
5.00 0.00000 0.00002 0.00045 10.0 0.00275 17.5 0.00735

0.00000 0.00012 0.00124 0.00608 0.01493

0.00030 0.00791 0.03838 0.05811 0.03447
7.50 0.00000 0.00001 0.00025 15.0 0.00144 25.0 0.00455

0.00000 0.00004 0.00072 0.00324 0.00929

0.00295 0.02435 0.03436 0.02297
10.0 0.00000 0.00013 20.0 0.00072 35.0 0.00225

0.00001 0.00040 0.00165 0.00463

0.00026 0.00858 0.01929 0.01025
15.0 0.00000 0.00003 25.0 0.00034 50.0 0.00067

0.00000 0.00011 0.00080 0.00141

0.00250 0.00515 0.00359
20.0 0.00001 35.0 0.00007 65.0 0.00017

0.00003 0.00016 0.00036

0.00060 0.00046 0.00099
25.0 0.00000 50.0 0.00000 80.0 0.00003

0.00000 0.00001 0.00007

!Result for º
1
(x, q). "Result for º

2
(x, q). #Result for »(x, q).
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following the procedures given in Ref. [7], we derive a solution representation, which is suitable for
numerical evaluation, given by

¼(x, q)"
1
n2 P

=

0

dk P
=

0

dgQM
1
(k) cos(kx)

]Ch(k, g)
sin(gq)!sin(gq*)

g
#q(k, g)

cos(gq*)!cos(gq)
g D . (62)

Equation (62) is a general form for both º
n
(x, q) and »(x, q), and in which we have defined

h"
t
1
t
3
#t

2
t
4

t2
1
#t2

2

, (63)

q"
t
2
t
3
!t

1
t
4

t2
1
#t2

2

, (64)

t
1
"1!p

1
w2
1
g
1
!p

2
w2

2
g
2
, (65)

t
2
"g#p

1
w2
1

f
1
#p

2
w2

2
f
2
, (66)

g
n
"

1
2kCtan~1A

k#eg
w

n
B#tan~1A

k!eg
w
n
BD , n"1, 2, (67)

f
n
"

1
2k

tanh~1A
2egk

w2
n
#e2g2#k2B, n"1, 2 . (68)

The definitions for t
3

and t
4

depend upon the quantity of interest. For º
n
(x, q), t

3
and t

4
are given

by, with n, m"1, 2, and mOn,

t
3
"p

n
[g

n
#g f

n
!w

m
(1!w

n
) (g

1
g
2
!f

1
f
2
)], (69)

t
4
"p

n
[gg

n
!f

n
#w

m
(1!w

n
) (g

1
f
2
#g

2
f
1
)]. (70)

For »(x, q), t
3

and t
4

are given by

t
3
"p

1
w

1
g
1
#p

2
w

2
g
2
, (71)

t
4
"!(p

1
w
1
f
1
#p

2
w
2
f
2
). (72)

Numerical evaluation of Eq. (62), which will be discussed in a later section, produces the
benchmark transport results for º

n
(x, q) and »(x, q).

4.2. The asymptotic solutions

The asymptotic analyses for transport solutions also follow the steps given in Ref. [7] for the
grey transport description or the steps given in Section 3.2 for the two-group diffusion description.
For large times (q<q

0
), the main contribution to the solutions comes from small s and small k.

Thus, we expand all the quantities in ºM
n
and »M at small s and small k, and keep up to the linear

terms in s and up to the quadratic terms in k. Specifically, we assume

es;w
n
#ikk, n"1, 2 (73)
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in Eq. (59) for small s and approximate r
n

by

r
n
(k, s)+

1
w

n
A1!

k2

3w2
n
B!

es
w2

n
A1!

k2

w2
n
B . (74)

We then use this result in Eqs. (60) and (61) and simplify ºM
n

and »M in a similar way as we did
in Section 3.2 for the diffusion description. After some algebraic manipulations and the
Laplace—Fourier inversions, we find that the asymptotic transport solutions at large times have
the same forms as the asymptotic diffusion solutions, i.e., they are given by Eqs. (46) and (47) too.
But the parameters b

n
and b

v
for transport theory are different from those for diffusion theory. For

the transport description, b
n

and b
v

are given by

b
n
"

a
1
q
0

2
!(1#e)x2

0
#ea2

1
!

a
1

w
n

#3ea
2
!(1#e)

w2
1
#w2

2
!w

n
w2
1
w2

2

, (75)

b
v
"

a
1
q
0

2
!(1#e)x2

0
#ea2

1
#(2e!1) a

2
, (76)

where a
1

and a
2

are still defined by Eqs. (50) and (51).
For small q, the main contribution is due to large s. Therefore, we assume

es<w
n
#ikk, n"1, 2 (77)

in Eq. (59) for large s and approximate r
n

by

r
n
(k, s)+

1
es
!

w
n

(es)2
#

w2
n
!k2/3
(es)3

. (78)

We then use this result in ºM
n
and »M and proceed in the same manner as we did in Section 3.2. After

the double inversions, the asymptotic transport solutions at small times are found to be identical to
the asymptotic diffusion solutions. That is, the asymptotic transport solutions for small q are also
given by Eqs. (53) and (54).

4.3. The numerical results

The numerical evaluation of the general solutions given by Eq. (62) is not exceptionally difficult,
although not trivial. The evaluation of the double integrals proceeds in the same manner outlined
in an earlier paper [7]. The g!k plane is divided into areas whose sides are chosen to be multiples
of n. Farther from the origin, as the contribution to the integrals decreases, larger areas are chosen.
Each area is evaluated using the multiple integral method discussed in the book Numerical Recipes
in Fortran [9]. Each one-dimensional integral is evaluated with the open Romberg method to
a specified accuracy. However, when the inner one-dimensional integrals are added to compute the
two-dimensional integral, the cancellation due to the oscillation of the integrand causes the
tolerances for the one-dimensional integrals to be almost useless for quantifying the accuracy of
final results. Therefore, we adopt a conservative approach of tightening the error tolerances for the
integrals in each area until the final result for º

n
and » at each evaluated point is converged to at

least 1]10~4. That is, we require as a minimum that the first four digits after the decimal point are
converged for each result.
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Fig. 2. Comparison between the numerical and asymptotic transport solutions.

This numerical approach and the algebraic manipulations involved in the derivation of the
transport solutions are validated in the exactly same way as we did for diffusion theory. We first
perform some calculations for Case A and find that the numerical results obtained here agree with
the grey model results obtained in Ref. [7], as they should. This agreement precludes any doubts
associated in algebraic manipulations of deriving Eq. (62). Secondly, the asymptotic transport
solutions are compared with the numerical solutions. These results are shown in Fig. 2, with D still
defined by Eq. (56). For large times, we see the same phenomenon as in the diffusion description.
That is, the agreement between the two solutions deteriorates as the ratio of w

w
/w

1
becomes larger

and larger. This is also attributed to the fact that the large q assumption given by Eq. (73) is
compromised when w

2
/w

1
is large. Because as w

2
/w

1
goes to infinity, w

1
goes to zero, which makes

Eq. (73) invalid for n"1 and small k. On the other hand, unlike the diffusion results the agreement
between asymptotic and numerical transport solutions at small q seems not affected by the value of
w
2
/w

1
. We attribute this to the fact that the small q assumption, Eq. (78), is good for any values of

w
2
/w

1
. With the parameters currently used in this work (p

1
"p

2
"1

2
), w

1
ranges from unity to zero

and w
2

ranges from unity to two as w
2
/w

1
changes from unity to infinity. In any case, Eq. (78) is

a valid assumption for large s. Correspondingly, the small q asymptotic transport solutions, which
are derived based upon Eq. (78), are equally good for any values of w

2
/w

1
. We note that for very

small q, say for q(0.1, the quantity D does not reduce sharply as the decrease of q. This is caused
by the accuracy requirement in our calculation. We require each result to be converged at least to
the fourth (fifth in most cases) digit after the decimal point so that the absolute error of each result is
small (less than 1]10~4). However, the absolute value of radiation energy density at such small q is
also small (of the order of q). So the calculated numerical results suffer accuracy loss in relative
terms. Anyway, we see from Fig. 2 that the numerical results agree with the asymptotic solutions
within reasonably high accuracy in the appropriate ranges and the two solutions converge as q goes
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to zero or infinity. This comparison proves the correctness of our numerical scheme for the double
integrals.

We calculate the benchmarks for the non-grey Cases B and C and list the results in Tables 4
and 5, respectively. These results are believed to be accurate at least to the fourth digit after the
decimal point. The calculations were performed on a desk-top workstation. For most tabulated
points, it only requires seconds or minutes of computation time. However, some points, especially
those near the front of wave propagation, have bad sign cancellation and require a large number of
integrand evaluations and equivalently much longer computation time to converge.

5. Comparisons between different solutions

Both the diffusion and transport benchmark solutions to the problem have been generated in the
two-group picket-fence model in this work, as well as in the one-group grey model in earlier work
[7]. For educational purposes, we compare the diffusion solutions with the transport solutions and
also compare the picket-fence solutions with the grey solutions in this section. These comparisons
are done at time of q"10 as an example. Except at very large times (q<q

0
) where the asymptotic

solutions apply, the comparisons between solutions at other times are quite similar to those at
q"10. Therefore, conclusions drawn from the comparisons at q"10 are exemplary.

5.1. Diffusion theory versus transport theory

In order to visualize the numerical results and difference between the transport solutions and the
diffusion ones, we show in Fig. 3 the diffusion and transport radiation energy density profiles at
q"10 for the three cases we considered in the previous sections. The quantity shown in the figure is
the total radiation energy density º, which equals to º

1
#º

2
for Cases B and C. The results for

Case A are either taken from Ref. [7] or are calculated from the picket-fence model. Clearly, the
difference between transport and diffusion theories is significant and such difference depends upon
the opacity ratio w

2
/w

1
. For the grey Case A (w

2
/w

1
"1), diffusion theory approximates transport

theory reasonably well. Diffusion theory predicts results about 17% lower than the correct
transport theory results near x"0; and allows radiation to propagate only a little faster than
transport theory. However, as w

2
/w

1
becomes larger and larger, diffusion theory performs more-

and-more poorly. For Case B, whose w
2
/w

1
is 10, diffusion theory underestimates the total

radiation energy density near x"0 by 30% and it predicts radiation propagating significantly
(about 2 times) faster than that of transport theory. For Case C with w

2
/w

1
"100, the situation is

even more worse: diffusion theory predicts the total radiation energy density at x"0 about 45%
lower than the correct one and allows radiation to propagate into the medium far ahead of
transport theory (about 4 times further). For this case, the diffusion solution for the total radiation
energy density clearly suggests that there are two distinguishable groups of radiation traveling at
different speeds; and one group (º

1
) travels much much faster than the other (º

2
). The transport

solution for the total radiation energy density does not show this type of structure.
Diffusion theory not only predicts quantitatively inaccurate solutions, but may also predicts

qualitatively incorrect results. In Fig. 4, we plot the ratio of the material energy density » to the
radiation energy density º as a function of x for all the diffusion and transport solutions at q"10.
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Table 4
The transport benchmarks of º

1
(x, q), º

2
(x, q), and »(x, q) for Case B

x q"0.1 q"0.3 q"1.0 q"3.0 x q"10.0 x q"30.0

0.04956! 0.14632 0.39890 0.65095 0.99191 0.23014
0.00 0.04585" 0.11858 0.26676 0.51786 0.00 1.09334 0.00 0.32932

0.00458# 0.03511 0.23884 0.81005 2.04024 0.66113

0.04956 0.14632 0.39418 0.64570 0.98586 0.22899
0.10 0.04585 0.11858 0.26401 0.51216 0.10 1.08380 0.30 0.32625

0.00458 0.03511 0.23680 0.80144 2.02233 0.65473

0.04956 0.14181 0.35349 0.60076 0.93473 0.22319
0.30 0.04585 0.11563 0.23839 0.46275 0.30 1.00449 0.75 0.31066

0.00458 0.03489 0.21640 0.72556 1.87299 0.62278

0.04578 0.10753 0.28118 0.52264 0.79425 0.21808
0.45 0.04254 0.08956 0.18496 0.37580 0.50 0.80678 1.00 0.29773

0.00446 0.02893 0.16752 0.58601 1.49569 0.59549

0.02478 0.07316 0.23277 0.47187 0.61503 0.20912
0.50 0.02293 0.05929 0.14353 0.32037 0.75 0.55166 1.35 0.27532

0.00229 0.01756 0.12369 0.49152 1.01212 0.54935

0.00378 0.03879 0.18410 0.42049 0.51225 0.19533
0.55 0.00331 0.02902 0.10206 0.26455 1.00 0.39861 1.80 0.24272

0.00012 0.00617 0.07986 0.39651 0.72941 0.48282

0.00105 0.09013 0.31167 0.40883 0.17668
0.75 0.00066 0.03736 0.15017 1.35 0.25760 2.35 0.20221

0.00002 0.02270 0.21608 0.47338 0.40111

0.03332 0.22950 0.31043 0.14935
1.00 0.01016 0.07857 1.80 0.15077 3.15 0.15049

0.00427 0.11109 0.28209 0.29821

0.00250 0.15410 0.23303 0.11748
1.35 0.00054 0.03199 2.35 0.08256 4.20 0.10164

0.00007 0.04604 0.16026 0.20216

0.09082 0.15545 0.08451
1.80 0.00963 3.15 0.03885 5.60 0.06293

0.01513 0.08031 0.12619

0.04035 0.09376 0.05392
2.35 0.00182 4.20 0.01707 7.50 0.03517

0.00336 0.03767 0.07113

0.00316 0.04773 0.02967
3.15 0.00004 5.60 0.00611 10.0 0.01696

0.00007 0.01441 0.03455

0.01691 0.01265
7.50 0.00113 13.5 0.00601

0.00305 0.01238

0.00494 0.00423
9.00 0.00011 18.0 0.00140

0.00041 0.00297

0.00053 0.00080
10.0 0.00000 23.5 0.00013

0.00000 0.00030

!Result for º
1
(x, q). "Result for º

2
(x, q). #Result for »(x, q).
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Table 5
The transport benchmarks of º

1
(x, q), º

2
(x, q), and »(x, q) for Case C

x q"0.1 q"0.3 q"1.0 q"3.0 x q"10.0 x q"30.0

0.04995! 0.14959 0.42044 0.69138 0.99007 0.11347
0.00 0.04551" 0.11622 0.25595 0.48965 0.00 1.05000 0.00 0.39038

0.00454# 0.03419 0.22354 0.74944 1.96476 0.79478

0.04995 0.14959 0.41545 0.68633 0.98490 0.11187
0.10 0.04551 0.11622 0.25339 0.48413 0.10 1.03985 0.75 0.35243

0.00454 0.03419 0.22177 0.74128 1.94533 0.71378

0.04995 0.14489 0.37258 0.64299 0.94074 0.10873
0.30 0.04551 0.11340 0.22925 0.43605 0.30 0.95569 1.35 0.28293

0.00454 0.03398 0.20359 0.66860 1.78386 0.56724

0.04612 0.10963 0.29748 0.56722 0.81370 0.10577
0.45 0.04224 0.08801 0.17768 0.35043 0.50 0.74874 1.80 0.22416

0.00442 0.02828 0.15772 0.53231 1.38266 0.44522

0.02498 0.07480 0.24799 0.51747 0.65444 0.10197
0.50 0.02275 0.05811 0.13694 0.29537 0.75 0.48244 2.35 0.15860

0.00227 0.01709 0.11507 0.43873 0.87032 0.31139

0.00383 0.03996 0.19819 0.46710 0.56954 0.09679
0.55 0.00327 0.02820 0.09615 0.23998 1.00 0.32429 3.15 0.08941

0.00012 0.00591 0.07242 0.34474 0.57474 0.17339

0.00110 0.09961 0.36071 0.48630 0.09128
0.75 0.00063 0.03403 0.12874 1.35 0.18484 4.20 0.04321

0.00002 0.01913 0.17138 0.32123 0.08386

0.03777 0.27848 0.40928 0.08591
1.00 0.00896 0.06243 1.80 0.08860 5.60 0.02280

0.00330 0.07746 0.15199 0.04531

0.00291 0.19880 0.33982 0.08076
1.35 0.00046 0.02259 2.35 0.03664 7.50 0.01545

0.00005 0.02595 0.06370 0.03126

0.12568 0.26564 0.07586
1.80 0.00580 3.15 0.01204 10.0 0.01105

0.00625 0.02290 0.02251

0.05994 0.19510 0.07089
2.35 0.00094 4.20 0.00457 13.5 0.00695

0.00098 0.00994 0.01432

0.00502 0.12713 0.06641
3.15 0.00002 5.60 0.00188 18.0 0.00338

0.00000 0.00448 0.00718

0.06122 0.03698
7.50 0.00045 23.5 0.00077

0.00123 0.00176

0.02201 0.01515
9.00 0.00000 27.0 0.00013

0.00020 0.00034

0.00262 0.00475
10.0 0.00000 29.0 0.00001

0.00000 0.00004

!Result for º
1
(x, q). "Result for º

2
(x, q). #Result for »(x, q).
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Fig. 3. Comparison between diffusion and transport solutions for radiation energy density at q"10.

Fig. 4. Comparison between diffusion and transport results for the ratio of material energy density to radiation energy
density at q"10.

The transport solutions show that »/º is below unity everywhere for all the three cases. This is
a physically correct phenomenon. Because when the radiation source is on, it is the radiation that
heats up material so that the material temperature field » should lag behind of the radiation field
º, i.e. »(º. However, the diffusion description predicts contrary results (»/º'1) and tells that
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the radiation field º lags behind the material temperature field » in and near the source region for
Cases B and C. The reason for this non-physical behavior is as follows. Compared with the
transport results, diffusion theory underestimates both º and » for small x. But the underestima-
tion is more severe for º than ». It underestimates º in source region by about 30% and 45%,
respectively; and only underestimates» by about 18 and 11%, respectively, for Case B and Case C.
Since the transport results for º and » are very close to each other in the source region, diffusion
theory correspondingly ends up with predicting a larger value for » than º for small x.

From these comparisons, we see that diffusion theory performs poorly for Cases B and C and
should not be used to approximate the picket-fence transport model when the opacity ratio w

2
/w

1
is large. Perhaps this conclusion should be expected a priori. Because as w

2
/w

1
becomes large, w

1
is

small and equivalently the problem is optically thin for the first radiation group º
1
(x, q). Diffusion

theory cannot work well for optically thin problems.

5.2. The picket-fence model versus the grey model

We now compare the two-group picket-fence solutions with corresponding grey solutions. In
radiative transfer, there are two commonly used approaches to define a mean opacity for the grey
model, namely the Planck mean and the Rosseland mean. For the picket-fence model of i(l) we are
considering in this work, the Planck mean opacity is given by

i
P
"p

1
i
1
#p

2
i
2

(79)

and the Rosseland mean opacity is given by

1
i
R

"

p
1

i
1

#

p
2

i
2

. (80)

We see that the Planck mean is simply the averaged opacity defined earlier by Eq. (4). If we set
iN "1 for the problem, then Cases B and C have the same Planck mean, i.e. i

P
"1. Hence the

Planck mean grey solutions for both CasesB and C are the same and equal to the solutions of Case
A. On the other hand, the Rosseland means for Cases B and C are different. By the definition we
have i

R
" 40

121
for Case B and i

R
" 400

10 201
for Case C, again under the condition of iN "1. Scaling

the spatial and temporal variables (x and q) as well as the source parameters (x
0

and q
0
) by i

R
, we

can compute the Rosseland mean grey solutions for CasesB andC by using the numerical schemes
developed in this work for Case A or those developed in Ref. [7].

The comparisons between the two-group solutions, the Planck-mean grey solutions, and the
Rosseland-mean grey solutions are presented for Cases B and C in Figs. 5—8. These comparisons
are made at q"10 and for the total radiation energy density º and the material energy density ».
The results of diffusion theory are given in Figs. 5 and 6 for º and », respectively; and the results of
transport theory are given in Figs. 7 and 8 for º and », respectively. These figures are quite
self-explanatory. Nevertheless, we summarize some general trends as follows. First of all, it is more
feasible to approximate the picket-fence model by a grey model for transport theory than for
diffusion theory. These figures clearly show that the grey models in the transport description do
a better job than their counterparts in the diffusion description. The differences between the
two-group solutions and one-group solutions are consistently smaller in transport theory than
those in diffusion theory. Secondly, when the ratio w

2
/w

1
is not too large (like Case B), the use of
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Fig. 5. Comparison between grey and non-grey diffusion solutions for radiation energy density at q"10.

Fig. 6. Comparison between grey and non-grey diffusion solutions for material energy density at q"10.

the Rosseland mean is, in general, superior to the use of the Planck mean in both diffusion and
transport theories, even though either could result in significant errors. This is consistent with other
similar observations in the literature. Thirdly, when the ratio w

2
/w

1
is very large (like Case C),

neither of the grey models works. They both produce poor results. However, it seems that the
Planck mean predicts better results near x"0 than the Rosseland mean; and the Rosseland mean
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Fig. 7. Comparison between grey and non-grey transport solutions for radiation energy density at q"10.

Fig. 8. Comparison between grey and non-grey transport solutions for material energy density at q"10.

predicts better results near the wave front than the Planck mean in both theories. Finally, we see
that the Planck mean predicts more accurate results for » than º near x"0; on the contrary, the
Rosseland mean yields more accurate results for º than » near x"0. The comparisons given here
may not be typical for other radiative transfer problems. However, it is interesting to notice these
differences.
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6. Concluding remark

To include the frequency variable, we have considered a non-equilibrium radiative transfer
problem in an infinite medium by using the two-group picket-fence model in this work. The full
space-time solutions to this problem are constructed in both diffusion and transport theory. We
have also derived the asymptotic small-time and large-time solutions in terms of elementary
functions. These asymptotic solutions are used to validate the numerical schemes for generating
numerical solutions. Very accurate benchmark results are given in this paper. To the best of our
knowledge, this may be the first two-group, analytical solutions for a two-temperature non-
equilibrium radiative transfer problem. We hope the data given here will be useful in code
development for multigroup time-dependent radiation transport.

Comparisons between different solutions reveal that when the ratio of opacity w
2
/w

1
is large, the

diffusion description is not a valid approximation to the transport description and may predict
non-physical results. These comparisons also confirm the notion that the use of the Rosseland
mean is, in general, superior to the use of the Planck mean for small and moderate values of w

2
/w

1
.
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